Mapping resistance to the Potato Cyst Nematode, Globodera pallida, in a tetraploid, russet-skinned potato population

RESULTS

INTRODUCTION

- Globodera pallida is a major quarantined pest of potato in the world. Since the first detection in 2006 has had a significant economic impact on the Idaho potato industry.
- Long tuber shape and russet skin potato are US market preference. There is no resistance in russet-skinned breeding germplasm for G. pallida.
- G. pallida is classified into three pathotypes (Pa1-Pa3) based in their virulence reactions on different potato genotypes and the Idaho population has been classified as Pa2/3.
- In this study, PCN resistance was analyzed in a tetraploid population derived from PCN resistant cv. Eden and susceptible cv. Western Russet.

MATERIAL AND METHODS

A10915 Population Dataset:

- Tetraploid mapping population 'Eden' x 'Western Russet' consisting of 245 individuals.
- Desiree, Western Russet and Russet Burbank used as susceptible control and 4 potato differential lines

2 Evaluations:

- Clay pot tests in greenhouse with 6-10 pots per individual/controls
- Results standardized by calculating relative susceptibility (RS) to cv. Russet Burbank
- Traits: number of cysts, number of eggs/cyst, RS cysts, RS eggs and reproductive factor (RF) cysts.
 Data Analysis:
- Genotyped on 21K SNP markers
- QTL analysis was performed using R package QTLpoly

Summary statistics of a QTL for <i>G. pallida</i> detected within A10915 population						
Trait	QTL	LG	сМ	H ²		
number_cysts	1	4	18.14	0.193		
RS cysts	1	4	18.14	0.194		
RF cysts	1	4	18.14	0.193		
number_eggs/cyst	1	4	21.30	0.111		
	2	6	2.07	0.085		
RS eggs	1	4	21.30	0.111		
	2	6	2.07	0.085		

Reproductive factor (RF) within the population Total mean Number of % of RF cysts progeny population RF < 1 < 10 9 3.67 RF < 2 < 20 37 15.10 RF > 3> 290 199 81.22

Total mean eggs/cyst within the population					
Total mean eggs/cyst	Number of progeny	% of population			
< 50	37	15.10			
< 100	41	16.74			
< 150	62	25.31			
> 200	105	42.86			

DISCUSSION & CONCLUSIONS

- Nine clones were considered as resistant (RS value ≥ 7)
- Mean eggs/cyst and RS eggs/cyst poorly correlated with mean cysts per genotype. For example, a genotype with low mean cysts could have high eggs/cyst.
- Both the number of cysts and the number eggs/cyst are important variables in determining resistance.
- Mean cysts and RF cysts were strongly correlated within this population.
- QTL analysis indicated while cyst phenotypes mapped to a single locus on chromosome 4, eggrelated phenotypes were located on chromosomes 4 and 6.
- Markers linked to the detected QTL on chromosome 4 and 6 would likely prove useful for applied breeding to develop PCN resistant varieties.
- These results will help to further characterize PCN resistance from Eden and identify genetic regions valuable for PCN resistance in oblong, russet-skinned processing potatoes for the US industry.

Rocio Silvestre¹, Louise-Marie Dandurand², Richard Novy³, Jonathan Whitworth³ and Joseph C. Kuhl¹ ¹ Department of Plant Sciences, University of Idaho, Moscow, ID, USA

¹ Department of Plant Sciences, University of Idaho, Moscow, ID, USA ² Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA ³ United States Department of Acriculture, Acricultural Research Service (USDA-ARS), Aberdeen, ID, USA ⁴ Department of Acriculture, Acriculture Research Service (USDA-ARS), Aberdeen, ID, USA

Country: USA

University of Idaho