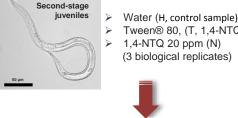
Transcriptional changes of *Meloidogyne luci* second-stage juveniles after exposure to 1.4-naphthoguinone



Joana Cardoso¹, Ivânia Esteves¹, Conceição Egas^{2,3}, Mara E. M. Braga⁴, Hermínio C. de Sousa⁴, Isabel Abrantes¹, Carla Maleita^{1,4,*}

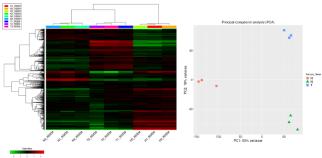
¹Centre for Functional Ecology – Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calcada Martim de Freitas, 3000-456 Coimbra, Portugal; ²Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculdade de Medicina, 1ºandar, 3004–504 Coimbra, Portugal; ³Biocant – Transfer Technology Association, BiocantPark, Cantanhede, Portugal; ⁴Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, Pólo II, Pinhal de Marrocos, 3030-790 Coimbra, Portugal, *carla.maleita@uc.pt

Meloidogyne luci, added to the EPPO Alert list in 2017, represents a threat to several important crops. The phasing out of nematicides from the market has intensified the search for phytochemicals with bionematicidal properties. The 1,4-naphthoquinone (1,4-NTQ) displayed strong nematicidal activity against M. luci. However, knowledge on potential mode(s) of action of 1,4-NTQ is still scarce. In this study, transcriptome profile of M. luci second-stage juveniles (J2) after exposure to 1.4-NTQ was obtained achieved to identify genes and pathways that might be involved on its mode of action.

Methodology

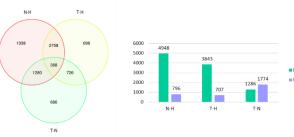
- Tween® 80. (T. 1.4-NTQ solvent)

- RNA extraction
- Libraries generation
- Trancriptome sequencing
- Data processing/de novo transcriptome assembly
- Transcripts abundance and differential expressed genes (DEGs) identification and annotation



This research was supported by Fundação para a Ciência e a Tecnologia (FCT), through national funds and the co-funding by FEDER through the Programa Operacional Factores de Competitividade (COMPETE, Portugal) under the projects PTDC/ASP-PLA/29392/2017, PTDC/ASP-PLA/31946/2017, CEECIND/02082/2017; PT2020 Partnership Agreement and COMPETE 2020 (Projects UID/BIA/04004/2020, UIDB/00102/2020, UIDP/00102/2020), ReNATURE (Centro-01-0145-FEDER-000007) and Instituto do Ambiente, Tecnologia e

M. luci transcriptome


- > De novo assembly of M. luci J2 transcriptome with 58.042 transcripts
- Gene abundance matrix with a total of 47,435 expected counted genes

Heatmap and PCA analyses in IDEP.95

- Clear differences between the H, N and T treatments \geq
- Minimal variations among biological replicates

DEGs in response to treatments

- 7,854 DEGs among the 3 conditions \geq
- Higher number of DEGs between N-H than between T-H or T-N treatments
- Higher number of down-regulated genes in both N-H and T-H comparisons, than up-regulated genes
- Closer number of up or down regulated genes \geq between T-N comparison
- Perceptible antagonist effect of 1,4-NTQ on M. luci
- On going: gene annotation of DEGs to identify nematode gene networks and metabolic pathways affected by 1,4-NTQ