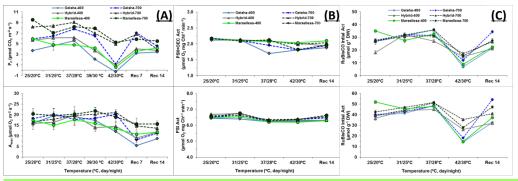
^{28th Conference} Sic 2021 Enhanced air [CO₂] mitigates high temperature impact in elite *Coffea arabica* L. genotypes

Ramalho José C.^{1,2} (cochichor@isa.ulisboa.pt), Semedo José N.^{2,3}, Lidon Fernando C.², Rodrigues Ana P.¹, Pais Isabel P.^{2,3}, Silva Maria J.^{1,2}, Simões-Costa Maria C.¹, Moura Isabel¹, Scotti-Campos Paula^{2,3}, Partelli Fábio L.⁴, Marques Isabel¹, Leitão António E.^{1,2}, Alves Paula¹, Reboredo Fernando H.², Silva Maria M.^{2,5}, Rodrigues Weverton P.⁶, Campostrini Eliemar⁶, DaMatta Fábio M.⁷, Ribeiro-Barros Ana I. ^{1,2}

¹ PlantStress&Biodiversity, CEF, ISA/Univ. Lisboa, Oeiras and Lisboa, Portugal; ² GeoBioTec, FCT/UNL, Caparica, Portugal; ³ UIBRG, INIAV I.P., Oeiras, Portugal; ⁴ CEUNES, UFES, São Mateus, ES, Brazil; ⁵ ESEAG, Univ. Lusófona, Lisboa, Portugal; ⁶ Setor Fisiologia Vegetal, CCTA, UENF, Campos dos Goytacazes, RJ, Brazil; ⁷ Dept. Biologia Vegetal, UFV, Viçosa, MG, Brazil.

Introduction


Climate changes have been pointed to threat coffee crop sustainability, but relevant coffee heat tolerance has been reported (1), further promoted by elevated air $[CO_2]$ (eCO₂) (2,3) namely at C-assimilation level.

Materials and Methods

Two-year-old plants of *C. arabica cvs.* Geisha 3 (G3), Marsellesa (Mar) and their Hybrid (Hy), grown under air [CO₂] of 400 or 700 μ L L⁻¹, were exposed to a temperature rise from 25/20 °C (day/night) up to 42/30 °C (0.5 °C day⁻¹), and a two week recovery (Rec14). Photosynthetic impacts were assessed through leaf gas exchanges (net and maximal photosynthesis, P_n and A_{max}), photosystems (PS) electron transport rates, and RuBisCO activity (2).

References:

1-Dubberstein et al. 2020. Front. Plant Sci. 11:1049, doi: 10.3389/fpls.2020.01049 2-Rodrigues et al. Global Ch. Biol. 2016, 22, 415-31. doi:10.1111/gcb.13088 3-Martins et al. 2016. Front. Plant Sci. 7:947, doi: 10.3389/fpls.2016.00947

Figure: (A) net photosynthesis (P_n) and photosynthetic capacity (A_{max}); (B) Photosystem I and II activities; (C) Initial and Total RuBisCO activity.

BREEDCAES

Results Highlights and Conclusions

- Net photosynthesis (P_n) was only moderately affected at 39 °C, but strongly declined by 42 °C. eCO₂ kept greater P_n (and A_{max}) values at all temperatures, with a clear heat impact mitigation (Marsellesa and Hybrid). Minor non-stomatal impact (A_{max}) was found under eCO₂ at 42 °C, but with relevant aftereffects up to two weeks.
- Intrinsic heat (42 °C) tolerance of both photosystems (PSs) I and II, irrespective of genotype or [CO2].
- Despite A_{max} maintenance at 42 °C, RuBisCO showed pronounced thermal sensitivity (although with a somewhat lower impact and better recovery under eCO₂ in all genotypes), deserving special breeders attention.

Acknowledgements:

Funding support by European Union's Horizon 2020 research and innovation program (grant agreement No 727934, project BreedCAFS), and by Fundação para a Ciência e a Tecnologia (project PTDC/ASP-AGR/31257/2017; units UIDB/00239/2020; UIDP/04035/2020).

