

Identification of constraints affecting the coffee productivity and quality in Burundi

Kaqisye Alain^{1,2}, Bernard Vanlauwe³, Nibasumba Anaclet², Taye Kufa³, Charles L. Bielders¹ 1.Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium; 2. Institut des Sciences Agronomiques du Burundi, Burundi

3. International Institute of Tropical Agriculture, IITA, Burundi.

E-mail: alain.kagisye@uclouvain.be , alainkagisye@yahoo.com

Introduction

- Arabica coffee occupies 10% of the cultivated land and is an important source of income in Burundi (ISABU, 2009).
- Favorable climate and the Bourbon varieties are great assets that the country has to develop (OIC,2015). However, vield and quality of coffee in Burundi is declining.

Objective

To identify the agronomic and environmental constraints that affect the productivity and quality of coffee in Burundi, in order to help the sector regain its competitiveness.

Materials & Methods

- Diagnostic survey in 198 coffee farms across the three main coffee production areas (Mumirwa, Humid plateau and Dry plateau) in both 2018 and 2019.
- Data collected : plot characteristics, yield parameters, soil fertility and the nutritional status of the coffee tree (soil and leaf sampling followed by chemical analyses), sensory quality of the coffee (score).

Figure 2: Effect of altitude on coffee bean yield per tree

Table 1: Correlations between coffee yield and soil fertility factors

Factors	Mumirwa	Humid plateau	Dry plateau
pH-H₂O	ns	ns	ns
Soil OM (%)	0.56***	0.41**	0.34*
Soil CEC (Cmol _c .kg ⁻¹)	0.55***	0.52**	0.48**
Soil N (%)	0.55***	0.44**	0.38*
Soil P(mg/kg)	ns	ns	ns
Soil K_exch. (Cmol _c .kg ⁻¹)	ns	ns	0.34*
Soil Ca_exch. (Cmol _c .kg ⁻¹)	ns	0.27*	ns
Soil Mg_exch. (Cmolc.kg-1)	ns	ns	0.27*
"ns": no significant correlation			

Results

ID: 4480 KAGISYE Alain

UCLouvain

o There are large regional differences in terms of coffee tree productivity (Fig. 1)

S3-PO-03

- Soil organic matter, CEC and 0 N are positively correlated with coffee yield (Table 1).
- pH and phosphorus are not 0 correlated with coffee yield in any of the agroecological zones of Burundi.
- Exchangeable K and Ca are 0 positively associated to yield in the dry and humid plateaus, respectively.
- Altitude around 1700 m was 0 the most favorable for coffee yield per tree (Fig. 2).
- High altitude (> 1700 m) 0 favors coffee quality, but good quality coffee can also achieved at lower altitudes (1400-1700m) (Fig. 3)

Conclusions & Perspectives

- Abiotic parameters such as soil organic matter (OM), nitrogen (N), and CEC, potassium, calcium, magnesium and altitude affect coffee yield. ≻
- Whereas high altitude is ensures better quality coffee on average, high quality coffee can also be produced at lower altitudes.
- In order to better understand how to improve the productivity of coffee in Burundi, factors limiting coffee productivity need to be evaluated in situ through on-farm experiments

References:

ISABU, 2009. Etude sur les causes profondes de la cyclicité de production du café au Burundi. Bujumbura: Institut des sciences agronomiques du Burundi. OIC. 2015. Organisation International du café. Données historiques : Statistiques commerciales. Rétrospective 2013-2014.