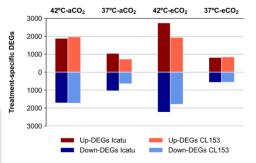


The transcriptomic basis for understanding the mitigation of heat impact by elevated [S1-PO-20] [CO₂] in the photosynthetic response of *Coffea arabica* and *C. canephora*

Marques Isabel¹ (isabelmarques@isa.ulisboa.pt), Fernandes Isabel², Paulo Octávio S.², Lidon Fernando C.³, DaMatta Fábio M.⁴, Ramalho José C.^{1,3}, Ribeiro-Barros Ana I.^{1,3}. ¹PlantStress&Biodiversity Lab, CEF, Instituto Superior de Agronomia, ULisboa, Portugal. ²cE3c, Dept. Animal Biology, Faculdade de Ciências, ULisbos, Portugal. ³GeoBioTec, FCT, UNL, Portugal. ⁴Dept. Biologia Vegetal, UFV, Viçosa, Brazil.

Our study

Leaf transcriptomic changes were evaluated in 1.5-year-old plants of *C. canephora* cv. Conilon Clone 153 (CL153) and *C. arabica cv.* lcatu (lcatu), grown at 25 °C and at two supraoptimal temperatures (37 °C, 42 °C), under ambient (aCO₂) or elevated air CO₂ (eCO₂).


Results

UNIVERSIDADE


•A high number of differentially expressed genes (DEGs) were observed as temperature rose but especially at 42 °C (Fig. 1).

•Transcriptomic changes showed that both CL153 and lcatu were strongly affected by 42 °C, although they can endure temperatures (37 °C) higher than previously assumed (Fig. 2).

•Although eCO₂ helped to mitigate the heat stress, 42 °C had a severe impact on both species, but mostly in Icatu, where genes related to ribulose-bisphosphate carboxylase activity, chlorophyll a-b binding, and the reaction centers of photosystems I and II were down-regulated, regardless of CO₂.

Figure 1. The effect of the supra-optimal temperatures of 37 °C and 42 °C on the number of up- and down-regulated DEGs in Icatu and CL153, grown in either aCO_2 or eCO_2 .

Figure 2. Clustered heat maps visualizing the expression of DEGs in lcatu and CL153, as a response to 37 °C and 42 °C temperatures under aCO_2 or eCO_2 . Hot colors represent up-regulated and cold colors represent down-regulated DEGs. Column color labels group comparisons by temperature treatments (yellow: 37 °C; orange: 42 °C).

Acknowledgements

A Transcriptomic Approach to Understanding the Combined

Impacts of Supra-Optimal Temperatures and CO2 Revealed

Different Responses in the Polyploid Coffea arabica and Its

Isabel Marques ^{1,2,*}, Isabel Fernandes ², Octávio S. Paulo ², Fernando C. Lidon ³, Fábio M. DaMatta ⁴

More details in:

Diploid Progenitor C. canephora

International Journal of Molecular Sciences

funding support by European Union's Horizon 2020 research and innovation program (grant agreement No 727934, proj. BreedCAFS), and by Fundação para a Ciência e a Tecnologia (project PTDC/ASP-AGR/31257/2017; units UIDB/00239/2020; UID/04129/2020; UIDP/04035/2020).

MDPI

Color Ke